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SA method is presented for calculating potential flows in infinite channels. Given a collection of
N sources in the channel and a zero normal flow boundary condition, the method requires an amount

of work proportional to N to evraluate the induced velocity field at each source position. Previous
schemes have been based either on conformal mapping, which experiences numerical difficulties
with the domain boundary, or direct evaluation of the Green's function. Both require O(N 2) work._ ,
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1 Introduction

The evaluation of potential fields in infinite channels arises as a numerical problem in several areas,
most notably electrostatics and fluid dynamics. The governing equation is the Poisson equation,

,f = -C (1)

subject to an appropriate boundary condition. In this paper, we will restrict our attention to
two-dimensional models and will consistently use the terminology of fluid dynamics. In viscous
incompressible flow, the left-hand side is the stream function, the right-hand side is the vorticity,
and the condition imposed on the boundary s that of zero normal flow

u. n = 0, (2)

where the velocity field u is given by

U---- V "(3)

In terms of the stream function, this is equivalent to specifying homogeneous Dirichlet boundary
conditions

1= 0. (4)

We will concentrate on particle models, where the vorticity field is discretized, not by a mesh,
but by N point vortices,

N
= ,. 6(.T - xi, Y - y,). (5)
i=1

Here, 6 is the Dirac 6-function and , is the strength of the ith point vortex located at (xi, yi). In
vortex methods, what we would like to compute is the stream function and/or velocity field at each
particle position. In the absence of boundary effects, the desired results can be obtained from the
free-space Green's function for the Poisson equation (- In r) as

I(zi,yi) = ' -'ln((zi-j)2+(yi-yi)2) for i--1, N (6)

u(zi, yi) = 2 -" (- ) 2 + .- x') for i= 1,...,N. (7)
j 2r (Xi - X i)2 +1 (yi - yji)2(7

Note that, using direct summation, the calculations (6) and (7) require an amount of work propor-
tional to N 2. To overcome this obstacle, a variety of fast "N-body" methods have been proposed in
the last few years, which reduce the computational complexity to O(NlogN) or O(N). These in-
clude particle-in-cell methods [1,13], astrophysical tree codes [2,3], series expansion methods [15,16], 13
and the fast multipole method [5,9,10].

Remark 1.1: It is. clear from (6) and (7) that the stream function and velocity field are un-
bounded in the neighborhood of a point vortex. In [7], Chorin introduced the idea of replacing
the point vortices by "vortex blobs" whose induced field is held constant within a small neighbor- Codes
hood of the source. More recent work by Hald [11], Beale and Majda [4] and others has shown /or
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that higher order accuracy can be obtained by using different approximations for the local field.
Outside a finite-size core, however, the velocity field due to a vortex blob in all of these methods is
simply that of a point vortex. Since we are interested in reducing the computational cost of vortex
methods, which is generally dominated by for field interactions, we will ignore the precise nature
of the local interactions and will continue to use the point vortex model.

For a straight channel, the fluid velocity cannot be obtained as in (6) and (7). The ma,.i
difficulty is that the zero normal flow condition can only be satisfied by an infinite image system
(Section 2), making direct summation over a collection of point sources impossible. The most
commonly used technique for overcoming this problem in constrained flows is that of conformal
mapping. By converting the calculation to one in the upper half plane, the boundary condition can
be imposed with one image per particle, and the potential flow computed as in (6) and (7) with
only double the number of point vortices (Fig. 1). An attractive feature of this approach is that
the fast N-body algorithms for free-space calculations may directly be applied.

A 0 B D B

Figure 1
Conformal mapping of the channel to the upper half plane. The left-hand limit points A and C are

mapped to the origin and the four solid vertical line segments in the channel are mapped to the four
semicircles in the upper half plane. Two representative particles are marked by the small circle and
square. The zero normal flow boundary condition is easy to apply with the method of images (each source
is simply reffected across the z-axs and given opposite strength). Unfortunately, there is much stretching

and contraction of the physical domain which can cause practical difficulties.

There are two objections to this mathematically reasonable procedure. In a channel with zero
normal flow boundary conditions, the velocity field induced by a point source decays exponentially
along the length of the channel. But the free-space Green's function used in the upper half plane
decays as 1, losing much of the physical behavior of the solution. In fact, the physical behavior
Is expressed by the mapping itself, which for the strip {O _5 y# 5 7r} is simply e-. The second
objection is that a discretization of the boundary is often required (e.g. for vorticity generation).
Conformal mapping, however, is well known to experience numerical difficulty when the derivative
of the map has a great dynamic range (14,17]. This is clearly observed in Fig. 1, where the images of
equispaced points along the top and bottom of the channel are points whose separation is growing
(or contracting) exponentially. It would, on both counts, be much preferable to remain in the
channel itself. To do this we will first need to replace the infinite image system by an analytic
expression for the Green's function. This can be obtained through elipLic function theory. In
(6], Choi and Humphrey derive expressions for both the infinite channel and a closed rectangular
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domain. With this expression, the velocity field can be obtained in a manner analogous to the
N-body calculation of equation (7). Direct summation, of course, will require O(N) work.

In this paper, we propose a new algorithm for two-dimensional potential flow in infinite channels.
It is based on the analytically derived Green's function, and requires an amount of work proportional
to N to evaluate all pairwise interactions.

2 Green's function for an infinite channel

We begin by developing an explicit expression for the velocity field induced by a point vortex in
an infinite channel. The domain is defined to be the strip {0 5 y :. H}. We refer to the direction
z increasing as downstream and to the direction z dec:easing as upstream. We will use complex
notation, equating the points (z, yp) with the complex numbers zi. If we define fi by

f-1 0
i(z,) = E L - (8).o .2vr Zi -Z '

then
u(i, y) = (-Im(fi(z)), Re(i(z))) (9)

is the velocity field induced by a collection of point sources with strength 4i located at the points

zi = (zj, p,). In the remainder of this paper, we consider the calculation of fi rather than u and
will abuse notation by referring to fi as the velocity field.

Let us now suppose that a source of unit strength is located inside the channel at zo and that z
is a second point inside the channel with z $ zo. In order to satisfy the zero normal flow condition
along the top and bottom of the channel, we introduce the infinite image system shown in Fig. 2.

Let us first add up the contributions from the images with positive strength, located at zo+2jHi
(j = -0, ... , c0). The velocity field fi1 (z) induced by these images is given by the expression

=ii(z) = E 1 (10)
J=-00 z- zo + 2jHi

++ (11)
z -zo + 2jHi z - zo -2jHi

1 00 2(z -zo)
- z .. + -(z-o)+-112 j 2 . (12)

But from ([81, p. 36) we have

coth(irz) 1 2z 0  1
z 717 = Z2+ k 2  (13)

ki

so that
i1(z) = coth(a(z - zo)) , (14)

where
a (15)
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.... ...................................
* go+ 4Hi

.... .... ...... .I ......... ...zo+2Hi

*Z0  H *ZD
X 04o X

. zo - 2Hi

(a) 

(b)

Figure 2
Enforcing boundary conditions by the method of images. Successive reflection across the top and bottom

boundaries creates the image system shown. The images at positions 20 + 2jHi, j = -00, ... , 00 have

strengths of opposite sign from those at positions z0 + 2jHi. -

For the images with negative strength, located at Io + 2jHi (j = -oo, ..., oo), we obtain an induced
velocity field u 2 , given by

%(z) = -a" coth(or(z - io)). (16)

The net velocity field is, therefore,

f(z) = a- (coth(a(z - zo)) - coth(a(z - go))) . (17)

A simple integration yields the stream function IP induced by a point vortex,

IP(z) =Re log( sinh(a(z - zo)) (18)
\sinh(o'(z - ))

A different derivation of It is given by Choi and Humphrey in [6]. As mentioned previously, with
this analytic expression for the pairwise interaction, the evaluation of the velocity field at each of
the N source positions can be carried out in O(N 2) operations. In order to develop a fast algorithm
tailored to the channel itself, we need to examine the properties of the Green's function in more
detail.

2.1 Upstream and Downstream Expansions

Let us suppose that z is downstream of zo (Re(z - zo) > 0). Then

eU'(z-') + e-U(z-o) (9
coth(a(z - zo)) = e._o (19)

4



22

= -1 + 1 - e 2  o ) (20)

0= -1 + 2.- Ee 2 afk . e-2k (21)
k=-O

= 1+ 2-e .e2 . (22)
k=1

Note that (21) can be obtained from (20) only if e- 2 ,(, - o) < 1 which is ensured by the condition
that z be downstream of the source. From (17), then, the velocity field downstream of a unit source
at zo has the expansion (about the origin)

fi(z) = a - (coth(a(z - zo)) - coth(a(z - jo))) (23)

= 2o' E(e 2 f 0  
- e2Ubok) e . (24)

k=1

From this, it is immediately obvious that the decay in the field is exponential along the length of
the channel. The main reason for developing an expansion of this form, however, is that it allows
us to effectively use the superposition principle. By this we mean the following:

Theorem 2.1 Suppose that m sources with strengths {qi, j = 1,...,m} are located at points
{z,, j = 1,...,m}, with Re(zj) < r. Then for any point z further downstream (Re(z) > r),
the velocity fi(z) induced by the sources is given by

00

fi(z) = ark . e-2 ar k (25)
k=1

where

ak = 2a' .E qi - (e2U i k 
- e2eik) " (26)

j=1

The error in truncating the expansion (25) after p terms has the bound

2(z) - E a ue- k < (27)
k=1- -

where

A = 4a j Iq and z = e (28)
j=1

Proof: The coefficients ak are obtained directly from equation (24). The error bound is a conse-
quence of the triangle inequality and the fact that (24) expands the field due to a single source as
the sum of two geometric series. 0

The upstream direction is treated in an analogous fashion. If Re(z - zo) < 0, then the velocity
due to a source at z can be expressed as

00

fi(z) = 2a,. -(e -2 k - e- 2 aok ) e 2z . (29)
k=1
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Theorem 2.2 Suppose that m sources with strengths {qj, j = 1, ... , m) are located at points
{z, j = 1, ... , m), with Re(zj) > r. Then for any point z further upstream (Re(z) < r), the
velocity fi(z) induced by the sources is given by

0

ii(z) E bk" e2azk  (30)
k=1

where

bk = 2a E qj. (e-2oxj - e-2ik) (31)
j=1 0

The error in truncating the empansion (30) after p terms has the bound

fi(z) - P bt" • es < A(32)

where k=1

A = 4or. jqj I and z e2O'(lR( )- ) (33)
j=l

Definition 2.1 The expansions given by (30) and (25) will be referred to as upstream and down-
stream expansions, respectively. For a given collection of sources, the pair will be referred to as
S-expansions.

The representation of the velocity field by means of these expansions may be viewed as an
analog of the multipole decomposition of the field due to a collection of sources in free space. It is
important to keep in mind, however, that both their rate of decay and region of convergence are
quite different.

Before examining the properties of S-expansions any further, we demonstrate their usefulness
in computing far field interactions with a simple example. For this, suppose that U1 and U2 are
two sets, each containing N point vortices, located inside a channel of width H, and separated by a
distance d (Fig. 3). To compute the velocity at each position in U1 due to the sources in U2 (or the

d 0

U1  U2

Figure 3
Two clusters of point vortices located inside a channel of width H. The distance between the two clusters
is denotLed by d.

velocity at each position in U2 due to the sources in Uj ) by means of the Green's function would
require O(N 2 ) operations. Let us instead form a downstream expansion due to the sources in U1
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and an upstream expansion due to the sources in U2. From (27) and (32), it is easy to determine
a priori how many terms are needed to achieve a relative precision of E. We simply require that

XP+  "  or P _ r d ' (34)

which is independent of N. The cost of formation of the two expansions is clearly proportional to
Np. Evaluating the two expansions at all points in the relevant cluster also requires an amount of
work proportional to Np, so that the total computation scales linearly with N, assuming that the
relative precision c and separation distance d are fixed.

3 The Shifting Lemma for S-expansions

The fast algorithm to be described depends not only on the formation and evaluation of S-
expansions, but on their analytic manipulation. The following obvious lemma describes the neces-
sary tools.

Lemma 3.1 Suppose that 00

0(zE) .b 2&'zk  (35)
k=1

and

f(zd) - - e- 2 zdk (36)
k=1

are the up and downstream expansions about the origin due to m sources with strengths {qi, j =
1,...,m} which are located at points {zi, j = 1,...,m}, with -r < Re(zj) < r for some r > 0. Then

fi(z.) = O e2a( ''- z )k  (37)
k=1

and 00

f(zd) = a e- 2a(X'- Z )k  (38)

are the corresponding up and downstream eZpansions about zo, where

Ok = bk " •2uzok (39)

and
ak = ak. e -  k • (40)

Furthermore, the error bounds for the shifted S-expansions are exactly the same as those for the
original S-expansions.

Note that the behavior of shifted S-expansions contrasts sharply with that of multipole expan-

sions in free-space (see [9,10]). In the latter situation, the v-alidity and accuracy of an expansion
depends not only on the source positions but on the location of the expansion center. Note also
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from (26) and (31) that the coefficients of S-expansions about the origin are pure imaginary. If the
centers of the shifted expansions are chosen to lie along the x-axis, then the coefficients in (39) and
(40) are also pure imaginary, yielding a savings in both computational cost and storage.

Remark 3.1: To this point, we have been viewing S-expansions as representations of the far
field due to a distribution of sources. It is possible, however, to view them in a different light.
Th- expansions (35) and (36) of the preceding lemma are valid outside the strip -r < Re(zj) < r.
By choosing a point zo upstream of the strip boundary (Re(zo) < -r), the shifted expansion (37)
yields a representation of the induced field in a neighborhood of zo. The same obviously holds for
shifting a downstream expansion in the downstream direction (38). These are local representations
of the field, the analogs of Taylor series in free-space, just as the far field S-expansions are the
analogs of multipole expansions.

4 The Channel Decomposition Algorithm

In this section, we describe the first part of the fast algorithm. The basic idea is to subdivide the

channel into vertical strips and to use S-expansions to compute far field interactions.

H

•~~~ ~~ ."...-4,8t'% a" 
' %'"'

(a) (b)

Figure 4
Decomposition of the channel into "elementary strips.' The original distribution of particles is shown in
(a). In (b), a finite domain containing all particles has been subdivided into rectangular regions, each of
which has an aspect ratio of one third. S-expansions can be used to compute the interactions between
particles contained in non-neighboring strips.

The "elementary" strips into which the channel is refined have an aspect ratio of one third.
The reason for not subdividing too much further is clear from equation (34). As d approaches 0,
the number of terms required to achieve a fixed precision grows arbitrarily large. If we stop using
expansions when d = H/3, however, then the number of terms required is given by

3- n 1  1P -- C < In - . (41)

We, somewhat arbitrarily, choose to stop subdividing the channel at this point. We will, of
course, need to compute the interactions within an elementary strip and between nearest neighbor
strips. This part of the calculation will be described in section 5. It relies on some additional
analysis and the Fast Multipole Method for free-space problems.

The remainder of this section is devoted to a description of the channel decomposition algorithm.
The main strategy used is that of clustering particles at a variety of spatial length scales and
computing distant interactions by means of S-expansions. We begin by determining the locations
of the extreme upstream and downstream particles. The corresponding section of the channel is

8
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considered to be the computational domain, and a sufficient number of elementary strips are created
to cover the region (Fig. 4).

We proceed by introducing a binary tree structure which groups particles at coarser and coarser

levels (Figure 5). Level 0 corresponds to the finest discretization of space (the elementary strips),
while level I + 1 is obtained from level I by the merger of two strips. The resulting strip at the
higher level is referred to as the parent, while the two strips being merged are referred to as the
children. Two strips at the same refinement level are said to be nearest neighbors if they share
a boundary, otherwise they are said to be well-separated. By construction, then, the minimum
distance between well-separated strips is H/3, and in order to achieve a precision of , in computing
interactions via S-expansions we need only choose the number of terms to be p = Rn(1/)l. At
coarser levels, the number of terms can obviously be decreased.

_I II II = 1 1 IL(a) (b) J

Figure 5
In (a), eight elementary strips are shown which cover the computational domain. This level of spatial
refinement is referred to as level 0. In (b), (c) and (d), pairs of strips are successively merged to form
coarser and coarser subdivisions of the channel. The "center" of a strip is defined to be the midpoint of
the segment of the X-axis bounded by that strip, as indicated in (d).

Definition 4.1 The center of a strip is defined to be the midpoint of the segment of the x-azis
bounded by that strip (Fig. 5 (d)).

Other notation used in the description of the algorithm includes

F1,j a p-term upstream expansion about the center of strip i at level 1, describing the far field due
to the particles contained inside the strip.

Frjj a p-term downstream expansion about the center of strip i at level 1, describing the far field
due to the particles contained inside the strip.

Lui a p-term local S-expansion (see Remark 3.1) about the center of strip i at level 1, describing
the field due to all particles upstream of strip i's nearest neighbors.

Lf, a p-term local S-expansion (see Remark 3.1) about the center of strip i at level 1, describing 0
the field due to all particles downstream of strip i's nearest neighbors.
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Interaction list for strip i at level 1, it is the set of strips which are children of the nearest
neighbors of i's parent and which are well-separated from strip i (Figure 6).

U V I djL
Figure 6
The interaction list for strip i at level 1. Strips marked with a "u" are upstream members of the list, while
those marked with a "d" are downstream members of the list. Note that thick lines correspond to mesh

level 1+1.

The channel decomposition algorithm is a two-pass procedure. In the first (upward) pass, we
form the far field S-expansions F7,i and Fd for all strips at all levels, beginning at the level of
elementary strips. In the second (downward) pass, we form the local S-expansions L'i and Ld for
all strips at all levels, beginning at the coarsest level.

To see how the latter part is accomplished, suppose that at level I + 1, the local expansions LU
and Ld have been obtained for each strip i. Then, by using lemma 3.1 to shift these expansions
to the centers of strip i's children, we obtain up and downstream expansions for each child strip
at level 1, describing the velocity field due to all particles up and downstream of strip i's nearest
neighbors. For each strip j at level 1, then, the interaction list is precisely that set of strips whose
contribution to the potential must be added in order to create Lu and Ld (Fig. 6). For each
upstream member of the list, we use Lemma 3.1 to shift the center of the corresponding far field
expansion Fu to the center of strip j and add the result to the upstream expansion obtained from
the parent. Similarly, for each downstream member of the list, we use Lemma 3.1 to shift the
center of the corresponding far field expansion Fd to the center of strip j and add the result to the
downstream expansion obtained from the parent. Note that at the coarsest level, Ld and Lu are
equal to zero, since there are no well-separated strips to consider.

Finally, for each strip j at the finest level, we evaluate the local expansions Ld, and L, 3 at the
position of each particle contained in the strip.

Algorithm 1

Comment tSet number of terms to be used in exFansions.]

Choose the precision e to be achieved. Set the number of terms
in all expansions to p = fln(1/e)1.

Upward Pass

Step 1.

Comment [Decompose the channel into elementary strips.]

10
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Define elementary strip width to be S,,d = H/3.
Compute Zmin = x-coordinate of extreme upstream particle position.
Compute z,. = x-coordinate of extreme downstream particle position.
Compute number of elementary strips K = r(zn.a - zmdn )/Swjdl.
Compute height of binary tree nlev = og92 Ki.

Step 2.

Comment [Form far field S-expansions at finest level.]

do i = 1,..., K
Form p-term up and downstream expansions F ,1 and Fd,
by using Theorems 2.1 and 2.2.

end do

Step 3.

Comment [Form far field S-expansions at all coarser refinement levels.]

do I = I,-, nlev
Form p-term up and downstream expansions F., and F,

for each strip i at level I by using Lemma 3.1
to shift the center of each child strip's expansions to the current
strip center and adding them together.

end do

Downward Pass

Step 4.

Comment [Form local S-expansions at all refinement levels. Recall that LU and Ld are zero at level nlev
since there are no well separated strips to consider.]

do I = nlev- 1,..., 0
For each strip i at level 1, initialize L , and L d

by shifting the Lu and Ld expansions of strip i's paient to the
center of strip i. For each strip in i's interaction list, determine
whether it is up or downstream of strip i. If upstream, shift the
center of the corresponding FP expansion to i's center and add to
L?.. If downstream, shift the center of the corresponding
FA expansion to i's center and add to Ld1, (Fig. 6).

end do

Step 5.

Comment [Local S-expansions are now available at the finest mesh level. They can be used to compute
the velocity field due to all particles outside the nearest neighbor elementary strips.]

do i = I...,
For each particle located in elementary strip i, evaluate
L ,j and L0,,. Add results together.

end do

11



A brief operation count of the channel decomposition algorithm follows.

Step Number Operation Count Explanation

Step I order N examine each particle position to determine extreme
up and downstream coordinates.

Step 2 order 2Np Each particle contributes to an upstream and
a downstream expansion.

Step 3 order K • p The number of nodes in a binary tree is less 0
than twice the number of leaves, so that the total
number of nodes is of the order K. For each node,
an amount of work of the order p is performed.

Step 4 order 5p. K For each strip at each level, there are at most three
entries in the interaction list. For each entry, the - S
amount of work is proportional to p. In addition,
two p-term expansions must be obtained from the parent.

Step 5 order 2Np Two p-term S-expansions are evaluated
for each particle.

The estimate for the running time is therefore

N.(4p+ 1) + K • 6p. (42)

5 The Evaluation of Nearest Neighbor Interactions

The channel decomposition algorithm has left us with a sequence of uncoupled problems to consider.
For each elementary strip, we must compute the internal interactions as well as the effects of the
sources contained in that strip on the particles in the nearest neighbors.

Figure 7
In the second part of the algorithm, interactions are computed within each elementary strip and between

nearest neighbors. This is accomplished by marching along the channel, considering one strip at a time,
and accounting for its influence on all relevant particles.

Because of their poor convergence rates in this regime, S-expansions are of limited use. We
could proceed by direct evaluation of the remaining interactions through the use of the Green's
function, but the asymptotic complexity of such an algorithm would be O(N 2). Let us instead
examine one of the subproblems in more detail.

12
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We begin by reconsidering the method of images used to impose the zero normal flow condition
in Figure 2. Successive reflection across the top and bottom of the channel yields a one-dimensional
array of squares (Fig. 8). These are either copies of the channel section itself or of its reflection
across the bottom boundary, offset by 2jHi for some integer j. Note that we are only acting on
the sources contained within the central elementary strip, but that we will compute the velocity
field at particle positions within all three elementary strips of which the square is composed. In
this manner, all interactions will have been accounted for exactly once.

The problem, again, is how to account for the sources in all image squares. We present a
solution based on multipole expansions.

.C2
C1

Co J
-Co

-. C- 1  S

Figure 8
The channel section and its translated images are represented by boxes labelled C. The square obtained
by reflection across the bottom boundary and its translates are labelled C.

5.1 Multipole Expansions

We will require two results. For the first, suppose that m point vortices with strengths q, and
positions zi are located within a disk of radius r centered at the origin. Then, for a point z with
Izi > r, the velocity field v(z) induced by the sources is given by a multipole expansion of the form

oo ak

v(Z) = E _T , (43)
kul

where

ak =F k- 1  (44)

The error in truncating the sum after s terms is

iv(=>_ (45)

13
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where

A= qi and c1I(46)
i=N

For a proof, see (9].
Note that in order to obtain a relative precision of e (with respect to the total charge), the

number of terms required in the series representatioL of v is approximately - logo(c), independent
of m, the number of source charges.

The second result we need is contained in the following lemma, which describes the conversion
of a multipole expansion into a local (Taylor) expansion inside a circular region of analyticity.

Lemma 5.1 (Conversion of a Multipole Expansion into a Local Expansion) Suppose that
m sources of strengths q1 , q2, ..., q. are located inside the circle D, with radius R and center at zo,
and that Izol > (c + 1)R with c > 1. Then the corresponding multipole expansion

v(z)- , k (47)

converges inside the circle D2 of radius R centered about the origin. Inside D2, the potential due
to the charges is described by a power series:

00

VW = bi. -z, (48)
1=0

where
bi- = 00 lI k - (-l)k" (49)

Furthermore, for anys > max (2L , an error bound for the truncated series is given byFurtermre, or ny s>_ az(2, C_1),nero

VZ t i-z A(4e(s + c(c +1) +c 2 ) (1)+1 (50)
1=0 G

where A is defined in (48) and e is the base of natural logarithms.

Proof: See (9]. 0

Definition 5.1 Two squares with sides of length 2d are said to be well-separated if they are sepa-
rated by a distance 2d.

Remark 5.1: Let A and B be well-separated squares with sides of length 2d, and let DA and
DB be the smallest disks containing the boxes A and B, respectively. Then the disks have radii
v2_- d, and the distance from the center of one disk to the closest point in the other disk is at least
(4 - vf2) . d. Letting c = (4 - V/2)/VI f 1.828, the error bound (50) applies with a truncation error
using &-term expansions of the order c-8.
Remark 5.2: In this section, the center of a square refers to its geometric center and not to its
strip center (Definition 4.1).
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5.2 Reduction to a Free Space Problem

We will use Lemma 5.1 to account for all image sources outside the nearest neighbor squares. The
remaining calculation can then be carried using the free space Green's function (see page 1). We
begin by choosing a coordinate system with the origin lying at the center of Co. For each square
Cj, the multipole expansion induced by the contained sources is of the form

•* (51)
)=1 (z_ .

where
zi  2jHi (52)

is the square's center. Note that the coefficients ak of such a multipole expansion are translation
invariant; i.e. they are identical for all integer j. Moreover, for j # 0, Ci is well-separated from Co,
and the field induced inside the channel is accurately representable by an a-term local expansion,
where a = r- log(e)1 is the number of terms needed to achieve a relative precision e (see Remark
5.1). This local representation is given by Lemma 5.1 as

P
*,(z) E bn. zm (53)

mO

with

b= m + (1) (54)

Let S be the set of non-zero integers. To account for the field due to all well-separated images
Ci, we compute the coefficients of a local representation by adding together the shifted expansions
of the form (54) for all z1 withj E S to obtain

P
O(z) - b •t'1 . Zl (55)MW-O

where

b - ak k-) (1)k z" (56)

The summation over S for each inverse power of zi can be precomputed and stored. For powers
greater than one, the series is absolutely convergent. For (m + k) = 1, however, the series is
not absolutely convergent, and the computed value depends on the order of addition. Choosing
a reasonable value for the sum of the series requires consideration of the physical model. For
this, suppose that the only particle in the simulation is a source of unit strength located at the
origin. Then the image system corresponds to a uniform one-dimensional lattice, and by symmetry
considerations, the induced velocity at any lattice point must be zero. But the net velocity of the
particle at the origin corresponds to the summation over S of 1zi, so that we set
I1

0. (57)
SZj
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Lemma 5.2 For k > 1,

$ -if k is even

where (z) is the Riemann zeta function.

Proof: For k odd, we have

1 (2jHi)k + : (-2jHi)k (59)
S'J j=1 '=1(2 ik

=0. (60)

For k even, we have

00 1 1( 1
-- (2jHi) E (61)

1 001

= 2k4lHkik 1 j (62)

(-1)" £ 1
- 2k1Hk-..k "(63)

To account for the well-separated images of C0 , we will require the corresponding multipole
expansion. It is easy to verify, however, that for such squares, centered at a point wj, the expansion
is of the form

k=1 (Z - Wj)k

where

7k = -ak (65)

Except for Co and 01, all of these images are separated from Co, and as above, the fields they
induce inside the channel section are accurately representable by a local expansion,

%j(z)= : b. zm (66)
mmO

with
6 ffi m k -1 (--1)k "(67)

k=1 tO, ( k-1

The well-separated images Ci dearly have centers

-5Hi, -3Hi, 3Hi, 5Hi, ... (68)

Let T be the set of integers of the form

{±(2j + 1), j = 1, 2,..., oo} (69)
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We again account for the field due to all well-separated images by forming the coefficients of a local
representation

P
'I(z)= Z6t ° al. zm, (70)

m=0

where ~' ~ -i
-'°"al 7'Yk mk-1 (-1)k (71)

The summation over T for (m + k) > 1 is absolutely convergent. For (m + k) = 1, the series is
not absolutely convergent, but symmetry considerations again dictate the choice

11 = o. (72)
T W

Lemma 5.3 For k > 1,

1 0 if k is odd
T2-IrIkL)-kI if k is even (3T HXA:! "

where Bk is the kth Bernoulli number.

Proof: For k odd, we have

1 00 1 00 1 (41)Hi)k + F,
W J., ((2j + )Hi) (-(2j + 1)Hi)k

0 0. (75)

For k even, we have

00 10
1 F 1 k + 001 76k = ((2j + 1)Hi)k +  (-(2j + 1)Hi)k

20 1 (77)SJkikF (2i+1)k

2. 1-)k/ 2 oo 1 (78)

Hk E(2j..)k (78)

The result now follows from the equality ([8], p. 7)
00 1 (2 2k - 1) 2 k 'B2 (79

1  (2j + 1)2k 2 2 (2k)t

If we add the computed coefficients 6to " from (71) to the coefficients bt2° tl from (56), we obtain
a single local expansion which describes the field due to all sources outside the nearest neighbor
squares of Co. This local expansion can then be evaluated at all particle positions in Co.
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The final step in the algorithm is to compute the velocity field due to the free-space sources
within Ca, 0o and 01. This problem is handled by the Fast Multipole Method (FMM), which
requires an amount of work proportional to n + m to evaluate the field induced by n sources at m
points.

Algorithm 2

Comment [Set number of terms to be used in expansions.]

Choose the precision c to be achieved. Set the number of terms

in all expansions to s = log.(1/0 ).

Comment [From Algorithm 1, we are given that the number of elementary strivs is K.]

Define ni to be the number of particles in the ith strip.
Clearly, ni + n2 + ... + nK = N, the total number of particles.

0

Comment [Process each elementary strip .1

do i =1 ... ,K
Define Co to be the square whose central third is strip i.

Step 1
Form coefficients ak of a-term multipole expansion about center
of Co induced by sources in strip i.
Form coefficients tk of #-term multipole expansion for square Co
via equation (65).

Step 2
Form coefficients b5 + 6k of s-term local expansion about the
center of Co which describes the field induced by all reflected
sources outside the nearest neighbor squares.

Step 3
Evaluate local expansion at all particle positions in strips i - 1,i and i + 1.

Step 4
Compute velocity field induced by sources in C0 , Co and C,
at all particle positions in strips i - 1, i and i + 1 via the FMM.

end do

A brief operation count of the Algorithm 2 follows.

Step Number Operation Count Explanation

Step 1 order Ns each particle contributes to an s-term
multipole expansion when its elementary strip is being processed.

Step 2 order Ks2  The creation of a local expansion requires
order 82 work and is carried out once for each elementary strip.

Step 3 order 3N* Three local expansions are evaluated for each particle.
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Step 4 order 3aN K free-space problems are solved, each of
dimension ni, with a factor of three included to account for
the extra image sources and evaluation locations. The factor
a repx* ,ents the constant for the linear time FMM.

The estimate for the running time is therefore

N.(4s + 3a) + K-s 2 . (80)

To summarize, then, the full algorithm consists of

1. Decomposition of the channel into elementary strips,

2. Algorithm 1 to compute distant interactions, leaving a sequence of uncoupled nearest neigh-
bor problems to consider,

3. Algorithm 2 to compute nearest neighbor interactions.

6 Numerical Results

A computer program has been implemented using the channel decomposition and nearest neighbor
algorithms of this paper. For testing purposes, we randomly assigned particles to positions within
a channel section of length 5H, where H was the channel width (Fig. 4), with source strengths
between 0 and 1. Five digit accuracy was requested from the expansions. In the first part of the
algorithm, S-expansions were computed to 10 terms, while in the second part of the algorithm,
multipole and Taylor expansions were computed to about 20 terms. We performed the calculations
in four ways: (1) through the algorithm of this paper in single precision; (2) directly from the
Green's function in single precision; (3) directly from the Green's function in double precision;
(4) via conformal mapping in single precision. The direct evaluation from the Green's function in
double precision was used as a standard for comparing the relative accuracies of the other three
methods in a least squares sense. Calculations were carried out on a SUN 3/50 workstation using
the 68881 co-processor.

The following observations can be made from Table 1.

1. The accuracies of the results obtained by the fast algorithm are in agreement with the error
bounds given in this paper. In fact, the results are consistently more accurate than either of
the direct calculations.

2. The CPU time requirements of the fast algorithm appear to grow somewhat superlinearly.
The reason for this is that there are two constants asssociated with the algorithm, a small
one for the channel decomposition and a larger one for the FMM. The observed timings are
dominated by the first constant for 100 and 400 particles, and by the second constant for S
the larger tests. When there are a small number of particles per strip, the FMM with its
associated overhead is simply not invoked.
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N IT.,, Tdir T___. E.19 Ed,,. E.,,
100 8.38 34.8 14.0 4.5 10 -  7.2 10- 7 - 1.1 10 -6
400 53.1 551 223 2.7 10-  4.1 10- 7  1.2 10- s

1600 398 (8820) (3550) 4.3 10- 7 1.3 10- 6 1.1 10- 6

6400 1890 (141000) (56800) 11 6.9 10 - 7 5.2 10 - 6 3.4 10- 6

Table 1
Table of CPU times in seconds required by the fast algorithm (alg), the direct Green's function method

(dir), and conforma! mapping with direct evaluation of the resulting N-body problem (cm). The least

squares errors for the three methods are shown in the last three columns. Timings in parentheses are 0

estimated by computing the results for only a subset of 100 of the particles. The corresponding errors are

computed from that smaller data set.

3. By the time the number of particles reaches 6400, the fast algorithm is about 75 times more
efficient than the direct Green's function method.

4. Even for as few as 100 particles, the fasL algorithm is about four times faster than the direct
calculation.

S7 Conclusions

i)A fast algorithm for potential flow in channels has been developed. It is based on asymptotic
expansions which we refer to as S-expansions, some analytic observations concerning classical mul-
tipole expansions and Taylor series, and the Fast Multipole Method. The asymptotic CPU time
requirements for the algorithm grow linearly with the number of sources and, despite its complex
structure, numerical experiments demonstrate that dramatic speedups can be obtained for even
moderate size particle systems.

In its current form, the algorithm requires that the channel boundaries be straight. A method
applicable to channels with perturbed boundaries will be described in a subsequent paper. -,

The author would like to thank V. Rokhlin for several useful conversations.
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